Simulating Fluids Using Fast Diagonalization

P. Aaron Lott Applied Mathematics & Scientific Computation University of Maryland, College Park

Joint work with: Howard Elman (CS) & Anil Deane (IPST)

Motivation - Efficient Solvers & Discretization

can dramatically reduce simulation time.

Faster machines and computational algorithms High order based discretizations can be used to obtain accurate, efficient simulations.

Model - Steady Advection Diffusion

$$-\epsilon \nabla^2 u + (\vec{w} \cdot \nabla)u = f$$

Inertial and viscous forces occur on disparate scales causing **sharp flow features** which:

- require fine numerical grid resolution
- cause poorly conditioned systems.

These properties make solving the discrete systems computationally expensive.

Methods - Spectral Element Discretization

A spectral element discretization provides:

accurate element based discretizationlarge volume to surface ratio

$$F(\vec{w})u = Mf$$

For bi-constant winds, we can use:

- fast diagonalization
- minimal memory

$$\tilde{F} = \hat{M} \otimes \hat{F}(w_x) + \hat{F}(w_y) \otimes \hat{M}$$

Methods - Tensor Products

What does \otimes mean?

Suppose $A_{k \times l}$ and $B_{m \times n}$ then the Kronecker Tensor Product

$$C_{km \times ln} = A \otimes B$$

$$= \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1l}B \\ a_{21}B & a_{22}B & \dots & a_{2l}B \\ \vdots & \vdots & & \vdots \\ a_{k1}B & a_{k2}B & \dots & a_{kl}B \end{pmatrix}.$$

Matrices of this form have some great properties that make computations very efficient and save lots of memory!

Methods - Fast Diagonalization

Matrix-vector multiplies can be recast as $\ (A\otimes B) \vec{u} = BUA^T$

which can be done in $\ O(n^3)$ operations instead of $\ O(n^4)$ (even better savings in 3D)

Best of all though is the Fast Diagonalization Property

$$C = A \otimes B + B \otimes A$$

Under certain conditions on A & B we can diagonalize C easily

$$V^T A V = \Lambda, \qquad V^T B V = I$$

$$C = (V \otimes V)(I \otimes \Lambda + \Lambda \otimes I)(V^T \otimes V^T)$$

$$C^{-1} = (V \otimes V)(I \otimes \Lambda + \Lambda \otimes I)^{-1}(V^T \otimes V^T)$$

Only need an inverse of a diagonal matrix!

Methods - Solver & Preconditioner

The discrete system of equations is solved iteratively using Flexible GMRES.

We construct a **preconditioner** based on:

- Bi-constant wind approximations
- Fast Diagonalization
- Domain Decomposition

$$F(\vec{w})P_F^{-1}P_Fu = Mf$$

$$P_F^{-1} = R_0^T \tilde{F}_0^{-1}(\bar{w}_0) R_0 + \sum_{e=1}^N R_e^T \tilde{F}_e^{-1}(\bar{w}^e) R_e$$

$$\tilde{F}_e^{-1} = (\hat{M}^{-1/2} \otimes \hat{M}^{-1/2})(S \otimes T)(\Lambda \otimes I + I \otimes V)^{-1}(S^{-1} \otimes T^{-1})(\hat{M}^{-1/2} \otimes \hat{M}^{-1/2})$$

Solver Results - Bi-constant Wind

Solution and contour plots of a steady advection-diffusion flow with bi-constant wind using Domain Decomposition & Fast Diagonalization as an exact solver. Interface solve takes 150 steps to obtain 10^-5 accuracy.

Preconditioner Results - Recirculating Wind

$$\vec{w} = 200(y(1-x^2), -x(1-y^2))$$

Steady advection-diffusion flow with recirculating wind.

Hot plate at wall results in sharp internal boundary layer.

Comparison of iteration residuals.

- •30 interface steps yeild 10% accuracy
- •(P+1)[120N+(P+1)] additional flops per step

Future Directions

- Precondition Interface Solve
- Analytical FDM
- Multiple wind directions per element
- •2D & 3D Navier-Stokes
- Flows with boundary layers

References

- A. Deane Spectral and Spectral Element Methods: Lecture notes in High Performance Computational Physics. NASA Contractor Report 203877. 1997.
- H. Elman, D. Silvester, & A. Wathen, Finite Elements and Fast Iterative Solvers with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005.
- H. Elman, P.A. Lott Matrix-free preconditioner for the steady advection-diffusion equation with spectral element discretization. In preparation. 2008.
- H. Elman, P.A. Lott Matrix-free Block preconditioner for the steady Navier-Stokes equations with spectral element discretization. In preparation. 2008.